Mainfold

Case Studies

OUR CLIENTS

C~

Tranpdﬂ% (b Continental EASTCOAST

AYCS

.. MERN Stack Case Study: Internal Operations App for
Mattress Company

Developed by: Mainfold
Client: Leading Regional Mattress Manufacturer

Stack: MongoDB, Express.js, React.js, Node.js

MERN STACK

exXpress @
|

Mongo DB Express.js ReactJS

Tatahaes Suetar ac eb Fronte
Database System Fr ; Erag

% Problem Statement

The client, a rapidly growing mattress manufacturing company, struggled with inefficient internal
workflows across departments. Key pain points included:

e Manual tracking of raw materials and production status

e Disjointed communication between warehouse, production, and sales teams
e Lack of real-time inventory insights

e Delay in order processing and fulfillment

e No centralized dashboard for performance metrics

@ Objective

To build a centralized web application to streamline production, inventory, sales, and order
tracking, accessible by various internal departments, ensuring real-time visibility and
operational efficiency.

% Tech Stack (MERN)

Layer Technology Purpose
Frontend React.js + Dynamic Ul with responsive dashboards
TailwindCSS
Backend Node.js + Express.js REST APIs to handle business logic
Database MongoDB Atlas Schema-flexible storage for inventory, orders, etc.
Authentication JWT + bcrypt.js Role-based access for Admin, Production Staff,
Sales, etc.

@ Core Features

1. Role-Based Login Dashboard

e Admin, Warehouse Staff, Production Managers, and Sales Reps

e Dynamic dashboard widgets based on role permissions

2. Inventory Management

e Track raw materials (foam, fabric, springs, etc.)
e Automated alerts for low stock

e Real-time quantity updates after usage or restock

3. Production Pipeline Tracker

e Status tracking for mattress batches (e.g., Cutting — Assembly — Packaging)
e Assign tasks and mark stages as complete

e Timeline view for managers

4. Order Management

e Internal order creation from sales team
e Track status from production to delivery

e Invoice generation & PDF export

5. Analytics Dashboard

e Production output (daily/weekly/monthly)
e Inventory turnover ratio
e Most ordered mattress models

e Average production time per unit

4 Security & Access Control

e JWT-based token authentication
e Password encryption with bcrypt

e API route protection for sensitive endpoints

%’ Impact & Results

Metric Before After Implementation
App
Production Delay per Batch 2-3 Days <1 Day
Inventory Error Rate ~15% <2%

Cross-team Communication Time 4-5Hours Real-time updates
Manual Reporting Weekly Auto-generated daily

Admin Satisfaction (Survey) — 9.3/10

X Future Enhancements (Planned)

e Mobile app for factory floor staff (React Native)
e Integration with logistics partners for delivery tracking

e Barcode scanning for inventory input/output

¢ ¥ Client Testimonial

“Mainfold transformed our internal operations with a system that fits like a glove.
The transition to digital was seamless, and we now have full control and clarity over
our daily operations.”

— Operations Head, Mattress Co.

{J MEAN Stack Case Study: Insurance Management
System

Developed by: Mainfold

Client: Mid-Sized Insurance Company (India-based)Stack: MongoDB,
Express.js, Angular, Node.js

MEAN STACK

Mongo DB Express Angular.js Node.js

(database system) (back-end web (front-end (back-end runtime
framework) | framework) | | environment) |

3% Problem Statement

The insurance company was managing policies, clients, and claims through fragmented tools
and manual processes. Key challenges included:

e No centralized digital platform for managing policies, claims, or agents
e Delays in claim approval processes

e Difficulty in tracking policy renewals

e Poor customer data visibility

e Non-compliance with audit trail requirements

@ Objective

To build a secure, scalable Insurance Management System (IMS) to digitize and automate the
full lifecycle of policy issuance, claim tracking, agent onboarding, and customer relationship

management (CRM).

“_ Tech Stack (MEAN)

Layer Technology
Frontend Angular 15
Backend Node.js + Express.js
Database MongoDB Atlas

Authentication JWT + Role-based
Guarding

Purpose

Robust, modular Ul with form-heavy
components

API for business logic and data operations

Flexible document storage for policies, claims,
agents

Secure user access control across modules

@ Core Features

1. Agent & Customer Management

e Register and onboard new agents with KYC validation

e Customer record creation and linking with active/inactive policies

e Agent hierarchy management (regional — zonal — individual)

2. Policy Lifecycle Automation

e Add/edit/remove policy types (health, auto, life, term)

e Assign policies to customers with custom terms

e Auto-reminder engine for renewals via email/SMS integration

3. Claims Processing Workflow

Claim request submission (with file upload)
Dynamic status stages: Initiated — Under Review — Approved/Rejected

Manager override & audit logs

4. Dashboard & Reports

Real-time metrics: Active Policies, Pending Claims, Agent Performance
Downloadable reports for compliance teams (PDF, Excel)

Custom filters by region, time period, claim type

5. Notification System

Push notifications to agents/customers via in-app and SMS

Renewal reminders, status updates, escalation alerts

4 Security & Compliance

JWT-based secure login
Field-level validation using Angular Reactive Forms

Role-based route protection (admin, manager, agent, customer)

Audit logs for all actions to support IRDAI compliance

%’ Results & Impact

KPI Before IMS After Implementation

Claim Processing Time 7-10 Days 1-3 Days

Policy Lapse Rate 25% < 8%

Agent Onboarding Time 1 Week 1 Day

Manual Paper Records ~100% 0%
Regulatory Compliance ~60% 95%+
Score

. Special Integrations
e Aadhaar + PAN API Integration for KYC
e SMS Gateway for customer alerts

e MongoDB Change Streams for real-time Ul updates in Angular

e Role-Based Routing in Angular to protect sensitive dashboards

X Planned Enhancements

e Mobile app for field agents using lonic + Angular
e OCR for reading policy documents during claim submission

e Integration with insurance rating engines (third-party APIs)

{ ¢ Client Feedback

“Mainfold delivered a fully digitized insurance operations suite that modernized how
we serve customers and manage our network of agents. The MEAN stack was a
game-changer.”

— CTO, Insurance Company

% .NET Stack Case Study: Internal Operations App for
Shoe Brand

Developed by: Mainfold

Client: Premium Footwear Brand (India-based)

Stack: ASP.NET Core, C#, SQL Server, Entity Framework, Angular

Framework

% Problem Statement

The client, a well-established shoe manufacturing and retail brand, was experiencing challenges
with siloed operations and lack of real-time visibility across departments:

e No unified system for production, stock, and distribution

Manual coordination between warehouse, production, and store teams

Frequent stockouts and overproduction due to poor demand forecasting

Inconsistent SKU management and tracking

No centralized internal app for process monitoring

@ Objective

To develop a secure, scalable internal web application for managing inventory, production
workflows, SKU tracking, distribution, and performance reporting across manufacturing
and retail units.

*“. Tech Stack

Layer Technology Purpose
Frontend Angular + Bootstrap Modern Ul with dynamic form components
Backend ASP.NET Core (C#) Business logic and API services
ORM Entity Framework Core Seamless data modeling & access
Database Microsoft SQL Server Structured storage of inventory, production logs

Authentication ASP.NET Identity + JWT Secure login, role-based access

@ Core Features
1. User & Role Management

e Role-based access for Admin, Production Supervisor, Inventory Manager, and Store
Manager

e Central login with ASP.NET Identity and two-factor authentication

2. SKU & Inventory Management

e Manage SKUs with variants (size, color, material)
e Real-time stock monitoring at multiple warehouses and retail outlets

e Low-stock alerts and reorder suggestions

3. Production Planning & Tracking

e Define production batches and track stages (cutting — stitching — finishing — QC)
e Assign tasks to departments and monitor timelines

e Barcode-based movement tracking

4. Distribution & Store Replenishment

e Auto-suggestion for restocking based on POS data from stores

e Track goods in transit and delivery confirmations

e Route-wise distribution mapping

5. Reporting & Dashboards

e Inventory turnover, production efficiency, and stock movement reports

e Custom filters by product category, location, or time frame

e Export to Excel, PDF formats

4 Security & Performance

e ASP.NET Core middleware for error handling and API security

e HTTPS enforced for all endpoints

e Role-based route guards in Angular

e SQL indexing and stored procedures for high-volume operations

%’ Impact & Results
Metric
Inventory Accuracy
Order Fulfillment Time
Production Delay Rate
Admin Effort in Data Collection

User Satisfaction (Survey)

Before App
~70%
4-5 Days
High (~25%)

Manual, 6—7 hrs/week

After Implementation
98%+
< 2 Days
<5%
Automated, < 30 mins/week

9.5/10

. Special Features Implemented

e Barcode Scanner Integration for inventory and production tracking
e Task Notification System with email and in-app alerts
e Multi-location inventory support (warehouses + retail stores)

e Audit Trail Logging for every major update and user action

X Future Enhancements (Planned)

e Mobile app for floor managers (Xamarin or MAUI)
e Al-based demand prediction module

e |Integration with POS and ERP systems

¢ ¢ Client Testimonial

“The .NET-based internal system built by Mainfold gave us unprecedented control
over production, inventory, and restocking. It's a powerful backbone for our

multi-location operations.”
— Operations Head, Shoe Brand India

&; MERN Stack Case Study: Internal Event Operations
Management App

Developed by: Mainfold

Client: National Events & Experiences Company (India)

Stack: MongoDB, Express.js, React.js, Node.js

MERN STACK

exXpress @
|

Mongo DB Express.js ReactJsS

Databas Eeo

% Problem Statement

The client, a leading events management company handling corporate and social events
nationwide, was struggling with fragmented communication, manual planning, and a lack of
centralized project oversight. Specific challenges included:

e Event planning and vendor coordination were tracked in spreadsheets
e No centralized visibility on staff availability and task assignments

e Difficulty managing multiple events simultaneously

e Budget tracking and client deliverables were disorganized

e Communication gaps between internal teams (creative, logistics, production)

@ Obijective

To develop a centralized web-based platform that enables seamless event lifecycle
management, covering planning, task allocation, vendor handling, budgeting, and team
collaboration — all from one internal dashboard.

“. Tech Stack

Layer Technology Purpose
Frontend React.js + Clean, responsive Ul with modular views
TailwindCSS

Backend Node.js + Express.js REST API for business logic and process automation

Databas MongoDB Atlas NoSQL storage for flexible event records, task boards,
e users

Auth JWT + berypt.js Secure login and session handling

Extras Socket.lO Real-time task updates and communication alerts

@ Core Features
1. Event Dashboard & Lifecycle Management

e Create and manage events with timeline view
e Track stages: Planning — Execution — Closure

e Assign responsible teams to each milestone

2. Team & Task Collaboration

e Assign tasks by event and department (creative, logistics, production)
e Real-time Kanban board with drag-and-drop updates

e Task deadlines, dependencies, and priority levels

3. Vendor & Supplier Management

e \Vendor database with categories (sound, lighting, catering, venue, etc.)
e Contract uploads, payment tracking, and contact logs

e Rating system for post-event feedback

4. Client Brief & Deliverable Tracker

e Upload client briefs and attach to event records
e Track approvals, deliverables, and revisions

e Real-time notification for updates/approvals

5. Budgeting & Cost Management

e Budget planner with category breakdown
e Track actual vs estimated expenses

e Flag over-budget segments with alerts

6. Notifications & Calendar Sync

e Real-time alerts for new tasks or deadline updates
e Sync events and tasks to Google Calendar

e Daily summary email with pending actions

4’ Security & Access Control

e Role-based access: Admin, Event Manager, Department Head, Team Member
e Encrypted passwords using bcrypt

e Protected API routes using JWT tokens

%’ Results & Impact
Metric Before App After Implementation

Event Coordination Time 20+ Hours/Event < 8 Hours/Event

Missed Deadlines ~30% Events <5%

Vendor Payment Errors Frequent Rare (<1%)
Team Communication Efficiency Low High (real-time)
Client Satisfaction (CSAT) Not Tracked 92% (avg.)

¢ Unique Highlights
e Modular architecture to support hundreds of concurrent events

e Socket.lO integration for live collaboration across departments

e Drag-and-drop task management using react-beautiful-dnd

e PDF generation for event briefs, schedules, and vendor contracts

X Future Roadmap

e Mobile app for on-site staff coordination (React Native)
e Al assistant for budget forecasting & vendor suggestions

e Offline sync for remote/on-ground teams

{ ! Client Testimonial

“Mainfold’s event management system has transformed our internal workflows. What once took hours
now happens in real-time. It’s like having a digital control room for every event.”
— Director of Operations, Events Co.

54 MEAN Stack Case Study: Transport Bidding
Management App for ECTrans

Developed by: Mainfold

Client: ECTrans — Logistics & Freight Management Company

Stack: MongoDB, Express.js, Angular, Node.js

MEAN STACK

Mongo DB Express Angular,js Node.js
(database system) (back-end web (front-end (back-end runtime
framework) | framework) | | environment) |

% Problem Statement

ECTrans, a fast-scaling logistics provider, faced major inefficiencies in how it managed transport
bids from third-party vendors for shipping routes. The challenges included:

e Manual bidding process via phone, emails, and spreadsheets

e No centralized platform to compare vendor bids per route or vehicle type
e Delays in vendor selection and route confirmations

e No historical data to analyze bidding trends or costs

e Lack of role-based access for internal teams and supervisors

@ Objective

To build a robust internal web app to manage transport bidding from registered vendors for
different delivery routes, vehicle types, and cargo requirements — with automated comparison,
approval workflows, and performance analytics.

“, Tech Stack (MEAN)

Layer Technology
Frontend Angular 15 + Material
ul
Backend Node.js + Express.js

Database MongoDB Atlas

Authentication JWT + Role Guards

Purpose

Fast, scalable, and responsive Ul

RESTful APlIs for bid handling and data
operations

Flexible document structure for bids, routes,
vendors

Secure access control for internal teams

@ Core Features

1. Route & Load Management

e Add/manage delivery routes with origin, destination, distance

e Attach load details: weight, cargo type, packaging requirements

e Pre-set bidding deadline and route availability

2. Vendor Bidding Portal (Internal Use)

e Internal entry of bids from vetted vendors (via phone, portal, etc.)

e Each bid includes rate per km, vehicle type, driver info, terms

e Automatic flagging of lowest bid & historical bid comparison

3. Bid Approval Workflow

e Approval matrix: Supervisor — Manager — Operations Head

e Role-based Ul showing only relevant routes and approvals

e Notification system for pending bid reviews and approvals

4. Vendor Database

e Track vendor performance: on-time delivery %, average rate, issues

e Upload documents (licenses, permits, contracts)

e Blacklist or prioritize vendors based on criteria

5. Analytics & Reporting

e Average bid rates per route

Export data in Excel/PDF

Monthly savings through competitive bidding

Vendor performance comparison charts

./ Security & Access Management

e JWT-based user authentication

e Angular role guards for dashboard access (Manager, Bidder, Admin)

e MongoDB field-level validation for sensitive data (rates, personal info)

%’ Results & Business Impact

KPI
Bid Processing Time per Route
Cost Fluctuation Control
Missed Bidding Windows

Data Accuracy & Vendor History

Before App
4-5 hours
Unpredictable
Frequent

Manual/Scattere
d

After Implementation
< 45 minutes

15-20% savings avg.
<1%

100% centralized

Staff Satisfaction (Internal Poll) — 9.4/10

+ Key Highlights
e Built for scalability to support 1000+ monthly route bids
e Dynamic filters for city, vehicle type, or delivery urgency
e Auto-calculated per-km rate comparison table

e Angular reactive forms with built-in validation for accuracy

X Future Enhancements

e \Vendor-side bidding portal (separate login)
e Real-time bid alerts via SMS/email
e GPS integration for delivery tracking

e Al-based vendor recommendations based on past route performance

{ ? Client Testimonial

“Mainfold’s MEAN-stack bidding platform revolutionized how we manage our
transport partners. We've gained transparency, speed, and cost efficiency — all in
one app.”

— Logistics Director, ECTrans

Mainfold

Contact:
www.mainfold.in
info@mainfold.in

Ph: +91 8921364775

http://www.mainfold.in
mailto:info@mainfold.in

	🛏️ MERN Stack Case Study: Internal Operations App for Mattress Company
	Developed by: Mainfold
	Client: Leading Regional Mattress Manufacturer
	Stack: MongoDB, Express.js, React.js, Node.js
	🧩 Problem Statement
	🎯 Objective
	🔧 Tech Stack (MERN)
	📲 Core Features
	1. Role-Based Login Dashboard
	2. Inventory Management
	3. Production Pipeline Tracker
	4. Order Management
	5. Analytics Dashboard

	🔐 Security & Access Control
	🚀 Impact & Results
	🛠️ Future Enhancements (Planned)
	📢 Client Testimonial

	🛡️ MEAN Stack Case Study: Insurance Management System
	Developed by: Mainfold
	Client: Mid-Sized Insurance Company (India-based)Stack: MongoDB, Express.js, Angular, Node.js
	🧩 Problem Statement
	🎯 Objective
	🔧 Tech Stack (MEAN)
	📲 Core Features
	1. Agent & Customer Management
	2. Policy Lifecycle Automation
	3. Claims Processing Workflow
	4. Dashboard & Reports
	5. Notification System

	🔐 Security & Compliance
	🚀 Results & Impact
	💡 Special Integrations
	🛠️ Planned Enhancements
	📢 Client Feedback

	👟 .NET Stack Case Study: Internal Operations App for Shoe Brand
	Developed by: Mainfold
	Client: Premium Footwear Brand (India-based)
	Stack: ASP.NET Core, C#, SQL Server, Entity Framework, Angular
	🧩 Problem Statement
	🎯 Objective
	🔧 Tech Stack
	📲 Core Features
	1. User & Role Management
	2. SKU & Inventory Management
	3. Production Planning & Tracking
	4. Distribution & Store Replenishment
	5. Reporting & Dashboards

	🔐 Security & Performance
	🚀 Impact & Results
	💡 Special Features Implemented
	🛠️ Future Enhancements (Planned)
	📢 Client Testimonial

	🎉 MERN Stack Case Study: Internal Event Operations Management App
	Developed by: Mainfold
	Client: National Events & Experiences Company (India)
	Stack: MongoDB, Express.js, React.js, Node.js
	🧩 Problem Statement
	🎯 Objective
	🔧 Tech Stack
	📲 Core Features
	1. Event Dashboard & Lifecycle Management
	2. Team & Task Collaboration
	3. Vendor & Supplier Management
	4. Client Brief & Deliverable Tracker
	5. Budgeting & Cost Management
	6. Notifications & Calendar Sync

	🔐 Security & Access Control
	🚀 Results & Impact
	💡 Unique Highlights
	🛠️ Future Roadmap
	📢 Client Testimonial

	🚚 MEAN Stack Case Study: Transport Bidding Management App for ECTrans
	Developed by: Mainfold
	Client: ECTrans – Logistics & Freight Management Company
	Stack: MongoDB, Express.js, Angular, Node.js
	🧩 Problem Statement
	🎯 Objective
	🔧 Tech Stack (MEAN)
	📲 Core Features
	1. Route & Load Management
	2. Vendor Bidding Portal (Internal Use)
	3. Bid Approval Workflow
	4. Vendor Database
	5. Analytics & Reporting

	🔐 Security & Access Management
	🚀 Results & Business Impact
	💡 Key Highlights
	🛠️ Future Enhancements
	📢 Client Testimonial

